Example: Regular Grammar p

Enter a regular grammar that generates the following language L over the alphabet X = {a, b}:
L = { w|w contains at least two a symbols }

Sample Solution (see RG XaXaX.jff)

Consider that the only constraint is two appearances of the symbol a and that any number of symbols may
appear before and between them.

Recall that a regular grammar may be specified in right-linear format. Thus all productions must have at
most one variable in the right-hand side and that variable must be consistently to the right of any
terminals.

Note that one possible DFA for this language is the following (see DFA XaXaX.jff):

a

b b

b
N

This suggests that the start symbol, in correspondence to state q0, should be able to produce any number
of b symbols followed by a string that contains the required number of a symbols.

S —bS

Further, once an a is produced, the remaining string must simply contain at least one a symbol,
corresponding to state q1.

S —aA

Similarly, the variable A should be able to produce any number of b symbols followed by a string that
contains at least one a symbol.

A — bA
A — aB

The remaining rules combine to produce all strings over {a, b} *.

B —¢|aB|bB
Here is the DFA will states annotated with the variables of this grammar.

1. Enter this grammar into JFLAP.

® O ® JFLAP: (RG_XaXaX.ff)

File Input Test Convert Help

|

Table Text Size

— e

LHS | |RHS

CICIEIRSEEEEL
AR R AR AR AR
&

2. Check the type of grammar using Test > Test for Grammar Type.

JFLAP : (RG_XaXaX.jff)

File Input Test Convert Help F
w
Table Text Size
—0
LHS | RHS
S — bS
S — aA
A — bA
A — aB
B — A
B — aB
B — bB
E
@O0 Grammar Type

This is a right-linear Grammar (Regular Grammar and Context-Free Grammar)

l(‘[f;"‘\

3. Verify known strings using the Brute Force Parse.

oo e JFLAP : (RG_XaXaX.jff)

File Input Test Convert Help

~Table Text Size

7N\
p—

”[Start | Pause | Step || | Derivation Table

“Input | abba

String accepted! 6 nodes generated.

LHS | |RHS | | Production ' Derivation
S

S — bS Saah A
A—bA abbA

A — bA A—aB abbaB
B—A abba

A — aB

B — A

B — aB

B — bB

Derived A from B. Derivations complete.

